跳过正文
icon

Sealos,在云桌面中运行分布式应用程序,像使用个人电脑一样使用云

icon

去看看👀

icon

扫码加入微信群,和云原生大佬们一起探讨云原生和不可描述的事情!

wechat qr code
重磅推荐❗
icon
 
舔狗日记

在 Kubernetes 中部署高可用 Harbor 镜像仓库
  1. 博客/

在 Kubernetes 中部署高可用 Harbor 镜像仓库

·3993 字·8 分钟· · ·
云原生 Harbor Kubernetes
米开朗基杨
作者
米开朗基杨
云原生搬砖师 & Sealos 开发者布道师 & FastGPT 熟练工
mkdirs
gptgod
FastGPT
Contact me

系统环境:

  • kubernetes 版本:1.18.10
  • Harbor Chart 版本:1.5.2
  • Harbor 版本:2.1.2
  • Helm 版本:3.3.4
  • 持久化存储驱动:Ceph RBD

1. Harbor 简介
#

简介
#

Harbor 是一个开放源代码容器镜像注册表,可通过基于角色权限的访问控制来管理镜像,还能扫描镜像中的漏洞并将映像签名为受信任。Harbor 是 CNCF 孵化项目,可提供合规性,性能和互操作性,以帮助跨 Kubernetes 和 Docker 等云原生计算平台持续,安全地管理镜像。

特性
#

  • 管理:多租户、可扩展
  • 安全:安全和漏洞分析、内容签名与验证

2. 创建自定义证书
#

安装 Harbor 我们会默认使用 HTTPS 协议,需要 TLS 证书,如果我们没用自己设定自定义证书文件,那么 Harbor 将自动创建证书文件,不过这个有效期只有一年时间,所以这里我们生成自签名证书,为了避免频繁修改证书,将证书有效期为 100 年,操作如下:

安装 cfssl
#

fssl 是 CloudFlare 开源的一款 PKI/TLS 工具,cfssl 包含一个命令行工具和一个用于签名,验证并且捆绑 TLS 证书的HTTP API服务,使用 Go 语言编写.

github: https://github.com/cloudflare/cfssl

下载地址: https://pkg.cfssl.org/

macOS 安装步骤:

🐳 → brew install cfssl

通用安装方式:

🐳 → wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64 -O /usr/local/bin/cfssl
🐳 → wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64 -O /usr/local/bin/cfssljson
🐳 → wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64 -O /usr/local/bin/cfssl-certinfo
🐳 → chmod +x /usr/local/bin/cfssl*

获取默认配置
#

🐳 → cfssl print-defaults config > ca-config.json
🐳 → cfssl print-defaults csr > ca-csr.json

生成 CA 证书
#

ca-config.json内容修改为:

{
    "signing": {
        "default": {
            "expiry": "876000h"
        },
        "profiles": {
            "harbor": {
                "expiry": "876000h",
                "usages": [
                    "signing",
                    "key encipherment",
                    "server auth"
                ]
            }
        }
    }
}

修改ca-csr.json文件内容为:

{
  "CN": "CA",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "ST": "hangzhou",
      "L": "hangzhou",
      "O": "harbor",
      "OU": "System"
    }
  ]
}

修改好配置文件后,接下来就可以生成 CA 证书了:

🐳 → cfssl gencert -initca ca-csr.json | cfssljson -bare ca
2020/12/30 00:45:55 [INFO] generating a new CA key and certificate from CSR
2020/12/30 00:45:55 [INFO] generate received request
2020/12/30 00:45:55 [INFO] received CSR
2020/12/30 00:45:55 [INFO] generating key: rsa-2048
2020/12/30 00:45:56 [INFO] encoded CSR
2020/12/30 00:45:56 [INFO] signed certificate with serial number 529798847867094212963042958391637272775966762165

此时目录下会出现三个文件:

🐳 → tree
├── ca-config.json #这是刚才的json
├── ca.csr
├── ca-csr.json    #这也是刚才申请证书的json
├── ca-key.pem
├── ca.pem

这样 我们就生成了:

  • 根证书文件: ca.pem
  • 根证书私钥: ca-key.pem
  • 根证书申请文件: ca.csr (csr 是不是 client ssl request?)

签发证书
#

创建harbor-csr.json,内容为:

{
    "CN": "harbor",
    "hosts": [
        "example.net",
        "*.example.net"
    ],
    "key": {
        "algo": "rsa",
        "size": 2048
    },
    "names": [
        {
            "C": "US",
            "ST": "CA",
            "L": "San Francisco",
	    "O": "harbor",
	    "OU": "System"
        }
    ]
}

使用之前的 CA 证书签发 harbor 证书:

🐳 → cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=harbor harbor-csr.json | cfssljson -bare harbor
2020/12/30 00:50:31 [INFO] generate received request
2020/12/30 00:50:31 [INFO] received CSR
2020/12/30 00:50:31 [INFO] generating key: rsa-2048
2020/12/30 00:50:31 [INFO] encoded CSR
2020/12/30 00:50:31 [INFO] signed certificate with serial number 372641098655462687944401141126722021767151134362

此时目录下会多几个文件:

🐳 → tree -L 1
├── etcd.csr
├── etcd-csr.json
├── etcd-key.pem
├── etcd.pem

至此,harbor 的证书生成完成。

生成 Secret 资源
#

创建 Kubernetes 的 Secret 资源,且将证书文件导入:

  • - n:指定创建资源的 Namespace
  • –from-file:指定要导入的文件地址
🐳 → kubectl create ns harbor
🐳 → kubectl -n harbor create secret generic harbor-tls --from-file=tls.crt=harbor.pem --from-file=tls.key=harbor-key.pem --from-file=ca.crt=ca.pem

查看是否创建成功:

🐳 → kubectl -n harbor get secret harbor-tls
NAME         TYPE     DATA   AGE
harbor-tls   Opaque   3      1m

3. 使用 Ceph S3 为 Harbor chart 提供后端存储
#

创建 radosgw
#

如果你是通过 ceph-deploy 部署的,可以通过以下步骤创建 radosgw

先安装 radosgw:

🐳 → ceph-deploy install --rgw 172.16.7.1 172.16.7.2 172.16.7.3

然后创建 radosgw:

🐳 → ceph-deploy rgw create 172.16.7.1 172.16.7.2 172.16.7.3

如果你是通过 cephadm 部署的,可以通过以下步骤创建 radosgw

cephadm 将 radosgw 部署为管理特定领域区域的守护程序的集合。例如,要在 172.16.7.1 上部署 1 个服务于 mytest 领域和 myzone 区域的 rgw 守护程序:

#如果尚未创建领域,请首先创建一个领域:
🐳 → radosgw-admin realm create --rgw-realm=mytest --default

#接下来创建一个新的区域组:
🐳 → radosgw-admin zonegroup create --rgw-zonegroup=myzg --master --default

#接下来创建一个区域:
🐳 → radosgw-admin zone create --rgw-zonegroup=myzg --rgw-zone=myzone --master --default

#为特定领域和区域部署一组radosgw守护程序:
🐳 → ceph orch apply rgw mytest myzone --placement="1 172.16.7.1"

查看服务状态:

🐳 → ceph orch ls|grep rgw
rgw.mytest.myzone      1/1  5m ago     7w   count:1 k8s01  docker.io/ceph/ceph:v15     4405f6339e35

测试服务是否正常:

🐳 → curl -s http://172.16.7.1

正常返回如下数据:

<?xml version="1.0" encoding="UTF-8"?>
<ListAllMyBucketsResult xmlns="http://s3.amazonaws.com/doc/2006-03-01/">
  <Owner>
    <ID>anonymous</ID>
    <DisplayName></DisplayName>
  </Owner>
  <Buckets></Buckets>
</ListAllMyBucketsResult>

查看 zonegroup

🐳 → radosgw-admin zonegroup get
{
    "id": "ed34ba6e-7089-4b7f-91c4-82fc856fc16c",
    "name": "myzg",
    "api_name": "myzg",
    "is_master": "true",
    "endpoints": [],
    "hostnames": [],
    "hostnames_s3website": [],
    "master_zone": "650e7cca-aacb-4610-a589-acd605d53d23",
    "zones": [
        {
            "id": "650e7cca-aacb-4610-a589-acd605d53d23",
            "name": "myzone",
            "endpoints": [],
            "log_meta": "false",
            "log_data": "false",
            "bucket_index_max_shards": 11,
            "read_only": "false",
            "tier_type": "",
            "sync_from_all": "true",
            "sync_from": [],
            "redirect_zone": ""
        }
    ],
    "placement_targets": [
        {
            "name": "default-placement",
            "tags": [],
            "storage_classes": [
                "STANDARD"
            ]
        }
    ],
    "default_placement": "default-placement",
    "realm_id": "e63c234c-e069-4a0d-866d-1ebdc69ec5fe",
    "sync_policy": {
        "groups": []
    }
}

Create Auth Key
#

🐳 → ceph auth get-or-create client.radosgw.gateway osd 'allow rwx' mon 'allow rwx' -o /etc/ceph/ceph.client.radosgw.keyring

分发 /etc/ceph/ceph.client.radosgw.keyring 到其它 radosgw 节点。

创建对象存储用户和访问凭证
#

  1. Create a radosgw user for s3 access

    🐳 → radosgw-admin user create --uid="harbor" --display-name="Harbor Registry"
    
  2. Create a swift user

    🐳 → adosgw-admin subuser create --uid=harbor --subuser=harbor:swift --access=full
    
  3. Create Secret Key

    🐳 → radosgw-admin key create --subuser=harbor:swift --key-type=swift --gen-secret
    

    记住 keys 字段中的 access_key & secret_key

创建存储桶(bucket)
#

首先需要安装 awscli

🐳 → pip3 install awscli  -i https://pypi.tuna.tsinghua.edu.cn/simple

查看秘钥:

🐳 → radosgw-admin user info --uid="harbor"|jq .keys
[
  {
    "user": "harbor",
    "access_key": "VGZQY32LMFQOQPVNTDSJ",
    "secret_key": "YZMMYqoy1ypHaqGOUfwLvdAj9A731iDYDjYqwkU5"
  }
]

配置 awscli:

🐳 → aws configure --profile=ceph
AWS Access Key ID [None]: VGZQY32LMFQOQPVNTDSJ
AWS Secret Access Key [None]: YZMMYqoy1ypHaqGOUfwLvdAj9A731iDYDjYqwkU5
Default region name [None]:
Default output format [None]: json

配置完成后,凭证将会存储到 ~/.aws/credentials

🐳 → cat ~/.aws/credentials
[ceph]
aws_access_key_id = VGZQY32LMFQOQPVNTDSJ
aws_secret_access_key = YZMMYqoy1ypHaqGOUfwLvdAj9A731iDYDjYqwkU5

配置将会存储到 ~/.aws/config

🐳 → cat ~/.aws/config
[profile ceph]
region = cn-hangzhou-1
output = json

创建存储桶(bucket):

🐳 → aws --profile=ceph --endpoint=http://172.16.7.1 s3api create-bucket --bucket harbor

查看存储桶(bucket)列表:

🐳 → radosgw-admin bucket list
[
    "harbor"
]

查看存储桶状态:

🐳 → radosgw-admin bucket stats
[
    {
        "bucket": "harbor",
        "num_shards": 11,
        "tenant": "",
        "zonegroup": "ed34ba6e-7089-4b7f-91c4-82fc856fc16c",
        "placement_rule": "default-placement",
        "explicit_placement": {
            "data_pool": "",
            "data_extra_pool": "",
            "index_pool": ""
        },
        "id": "650e7cca-aacb-4610-a589-acd605d53d23.194274.1",
        "marker": "650e7cca-aacb-4610-a589-acd605d53d23.194274.1",
        "index_type": "Normal",
        "owner": "harbor",
        "ver": "0#1,1#1,2#1,3#1,4#1,5#1,6#1,7#1,8#1,9#1,10#1",
        "master_ver": "0#0,1#0,2#0,3#0,4#0,5#0,6#0,7#0,8#0,9#0,10#0",
        "mtime": "2020-12-29T17:19:02.481567Z",
        "creation_time": "2020-12-29T17:18:58.940915Z",
        "max_marker": "0#,1#,2#,3#,4#,5#,6#,7#,8#,9#,10#",
        "usage": {},
        "bucket_quota": {
            "enabled": false,
            "check_on_raw": false,
            "max_size": -1,
            "max_size_kb": 0,
            "max_objects": -1
        }
    }
]

查看存储池状态

🐳 → rados df
POOL_NAME                    USED  OBJECTS  CLONES  COPIES  MISSING_ON_PRIMARY  UNFOUND  DEGRADED    RD_OPS       RD     WR_OPS       WR  USED COMPR  UNDER COMPR
.rgw.root                 2.3 MiB       13       0      39                   0        0         0       533  533 KiB         21   16 KiB         0 B          0 B
cache                         0 B        0       0       0                   0        0         0         0      0 B          0      0 B         0 B          0 B
device_health_metrics     3.2 MiB       18       0      54                   0        0         0       925  929 KiB        951  951 KiB         0 B          0 B
kubernetes                735 GiB    72646      99  217938                   0        0         0  48345148  242 GiB  283283048  7.3 TiB         0 B          0 B
myzone.rgw.buckets.index  8.6 MiB       11       0      33                   0        0         0        44   44 KiB         11      0 B         0 B          0 B
myzone.rgw.control            0 B        8       0      24                   0        0         0         0      0 B          0      0 B         0 B          0 B
myzone.rgw.log              6 MiB      206       0     618                   0        0         0   2188882  2.1 GiB    1457026   32 KiB         0 B          0 B
myzone.rgw.meta           960 KiB        6       0      18                   0        0         0        99   80 KiB         17    8 KiB         0 B          0 B

total_objects    72908
total_used       745 GiB
total_avail      87 TiB
total_space      88 TiB

3. 设置 Harbor 配置清单
#

由于我们需要通过 Helm 安装 Harbor 仓库,需要提前创建 Harbor Chart 的配置清单文件,里面是对要创建的应用 Harbor 进行一系列参数配置,由于参数过多,关于都有 Harbor Chart 都能够配置哪些参数这里就不一一罗列,可以通过访问 Harbor-helm 的 Github 地址 进行了解。

下面描述下,需要的一些配置参数:

values.yaml

#入口配置,我只在内网使用,所以直接使用 cluserIP
expose:
  type: clusterIP
  tls:
    ### 是否启用 https 协议
    enabled: true
    certSource: secret
    auto:
      # The common name used to generate the certificate, it's necessary
      # when the type isn't "ingress"
      commonName: "harbor.example.net"
    secret:
      # The name of secret which contains keys named:
      # "tls.crt" - the certificate
      # "tls.key" - the private key
      secretName: "harbor-tls"
      # The name of secret which contains keys named:
      # "tls.crt" - the certificate
      # "tls.key" - the private key
      # Only needed when the "expose.type" is "ingress".
      notarySecretName: ""

## 如果Harbor部署在代理后,将其设置为代理的URL
externalURL: https://harbor.example.net

### Harbor 各个组件的持久化配置,并将 storageClass 设置为集群默认的 storageClass
persistence:
  enabled: true
  # Setting it to "keep" to avoid removing PVCs during a helm delete
  # operation. Leaving it empty will delete PVCs after the chart deleted
  # (this does not apply for PVCs that are created for internal database
  # and redis components, i.e. they are never deleted automatically)
  resourcePolicy: "keep"
  persistentVolumeClaim:
    registry:
      # Use the existing PVC which must be created manually before bound,
      # and specify the "subPath" if the PVC is shared with other components
      existingClaim: ""
      # Specify the "storageClass" used to provision the volume. Or the default
      # StorageClass will be used(the default).
      # Set it to "-" to disable dynamic provisioning
      storageClass: "csi-rbd-sc"
      subPath: ""
      accessMode: ReadWriteOnce
      size: 100Gi
    chartmuseum:
      existingClaim: ""
      storageClass: "csi-rbd-sc"
      subPath: ""
      accessMode: ReadWriteOnce
      size: 5Gi
    jobservice:
      existingClaim: ""
      storageClass: "csi-rbd-sc"
      subPath: ""
      accessMode: ReadWriteOnce
      size: 5Gi
    # If external database is used, the following settings for database will
    # be ignored
    database:
      existingClaim: ""
      storageClass: "csi-rbd-sc"
      subPath: ""
      accessMode: ReadWriteOnce
      size: 5Gi
    # If external Redis is used, the following settings for Redis will
    # be ignored
    redis:
      existingClaim: ""
      storageClass: "csi-rbd-sc"
      subPath: ""
      accessMode: ReadWriteOnce
      size: 5Gi
    trivy:
      existingClaim: ""
      storageClass: "csi-rbd-sc"
      subPath: ""
      accessMode: ReadWriteOnce
      size: 5Gi

### 默认用户名 admin 的密码配置,注意:密码中一定要包含大小写字母与数字
harborAdminPassword: "Mydlq123456"

### 设置日志级别
logLevel: info

#各个组件 CPU & Memory 资源相关配置
nginx:
  resources:
    requests:
      memory: 256Mi
      cpu: 500m
portal:
  resources:
    requests:
      memory: 256Mi
      cpu: 500m
core:
  resources:
    requests:
      memory: 256Mi
      cpu: 1000m
jobservice:
  resources:
    requests:
      memory: 256Mi
      cpu: 500m
registry:
  registry:
    resources:
      requests:
        memory: 256Mi
        cpu: 500m
  controller:
    resources:
      requests:
        memory: 256Mi
        cpu: 500m
clair:
  clair:
    resources:
      requests:
        memory: 256Mi
        cpu: 500m
  adapter:
    resources:
      requests:
        memory: 256Mi
        cpu: 500m
notary:
  server:
    resources:
      requests:
        memory: 256Mi
        cpu: 500m
  signer:
    resources:
      requests:
        memory: 256Mi
        cpu: 500m
database:
  internal:
    resources:
      requests:
        memory: 256Mi
        cpu: 500m
redis:
  internal:
    resources:
      requests:
        memory: 256Mi
        cpu: 500m
trivy:
  enabled: true
  resources:
    requests:
      cpu: 200m
      memory: 512Mi
    limits:
      cpu: 1000m
      memory: 1024Mi

#开启 chartmuseum,使 Harbor 能够存储 Helm 的 chart
chartmuseum:
  enabled: true
  resources:
    requests:
     memory: 256Mi
     cpu: 500m

  imageChartStorage:
    # Specify whether to disable `redirect` for images and chart storage, for
    # backends which not supported it (such as using minio for `s3` storage type), please disable
    # it. To disable redirects, simply set `disableredirect` to `true` instead.
    # Refer to
    # https://github.com/docker/distribution/blob/master/docs/configuration.md#redirect
    # for the detail.
    disableredirect: false
    # Specify the "caBundleSecretName" if the storage service uses a self-signed certificate.
    # The secret must contain keys named "ca.crt" which will be injected into the trust store
    # of registry's and chartmuseum's containers.
    # caBundleSecretName:

    # Specify the type of storage: "filesystem", "azure", "gcs", "s3", "swift",
    # "oss" and fill the information needed in the corresponding section. The type
    # must be "filesystem" if you want to use persistent volumes for registry
    # and chartmuseum
    type: s3
    s3:
      region: cn-hangzhou-1
      bucket: harbor
      accesskey: VGZQY32LMFQOQPVNTDSJ
      secretkey: YZMMYqoy1ypHaqGOUfwLvdAj9A731iDYDjYqwkU5
      regionendpoint: http://172.16.7.1
      #encrypt: false
      #keyid: mykeyid
      secure: false
      #skipverify: false
      #v4auth: true
      #chunksize: "5242880"
      #rootdirectory: /s3/object/name/prefix
      #storageclass: STANDARD
      #multipartcopychunksize: "33554432"
      #multipartcopymaxconcurrency: 100
      #multipartcopythresholdsize: "33554432"

4. 安装 Harbor
#

添加 Helm 仓库
#

🐳 → helm repo add harbor https://helm.goharbor.io

部署 Harbor
#

🐳 → helm install harbor harbor/harbor -f values.yaml -n harbor

查看应用是否部署完成
#

🐳 → kubectl -n harbor get pod
NAME                                          READY   STATUS    RESTARTS   AGE
harbor-harbor-chartmuseum-55fb975fbd-74vnh    1/1     Running   0          3m
harbor-harbor-clair-695c7f9c69-7gpkh          2/2     Running   0          3m
harbor-harbor-core-687cfb49b6-zmwxr           1/1     Running   0          3m
harbor-harbor-database-0                      1/1     Running   0          3m
harbor-harbor-jobservice-88994b9b7-684vb      1/1     Running   0          3m
harbor-harbor-nginx-6758559548-x9pq6          1/1     Running   0          3m
harbor-harbor-notary-server-6d55b785f-6jsq9   1/1     Running   0          3m
harbor-harbor-notary-signer-9696cbdd8-8tfw9   1/1     Running   0          3m
harbor-harbor-portal-6f474574c4-8jzh2         1/1     Running   0          3m
harbor-harbor-redis-0                         1/1     Running   0          3m
harbor-harbor-registry-5b6cbfb4cf-42fm9       2/2     Running   0          3m
harbor-harbor-trivy-0                         1/1     Running   0          3m

Host 配置域名
#

接下来配置 Hosts,客户端想通过域名访问服务,必须要进行 DNS 解析,由于这里没有 DNS 服务器进行域名解析,所以修改 hosts 文件将 Harbor 指定 clusterIP 和自定义 host 绑定。首先查看 nginx 的 clusterIP:

🐳 → kubectl -n harbor get svc harbor-harbor-nginx
NAME                  TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)          AGE
harbor-harbor-nginx   ClusterIP   10.109.50.142   <none>        80/TCP,443/TCP   22h

打开主机的 Hosts 配置文件,往其加入下面配置:

10.109.50.142 harbor.example.net

如果想在集群外访问,建议将 Service nginx 的 type 改为 nodePort 或者通过 ingress 来代理。当然,如果你在集群外能够直接访问 clusterIP,那更好。

输入地址 https://harbor.example.net 访问 Harbor 仓库。

  • 用户:admin
  • 密码:Mydlq123456 (在安装配置中自定义的密码)

进入后可以看到 Harbor 的管理后台:

图片描述: 20201230163549.png

5. 服务器配置镜像仓库
#

对于 Containerd 来说,不能像 docker 一样 docker login 登录到镜像仓库,需要修改其配置文件来进行认证。/etc/containerd/config.toml 需要添加如下内容:

    [plugins."io.containerd.grpc.v1.cri".registry]
      [plugins."io.containerd.grpc.v1.cri".registry.mirrors]
        ...
      [plugins."io.containerd.grpc.v1.cri".registry.configs]
        [plugins."io.containerd.grpc.v1.cri".registry.configs."harbor.example.net".tls]
          insecure_skip_verify = true
        [plugins."io.containerd.grpc.v1.cri".registry.configs."harbor.example.net".auth]
          username = "admin"
          password = "Mydlq123456"

由于 Harbor 是基于 Https 的,理论上需要提前配置 tls 证书,但可以通过 insecure_skip_verify 选项跳过证书认证。

当然,如果你想通过 Kubernetes 的 secret 来进行用户验证,配置还可以精简下:

    [plugins."io.containerd.grpc.v1.cri".registry]
      [plugins."io.containerd.grpc.v1.cri".registry.mirrors]
        ...
      [plugins."io.containerd.grpc.v1.cri".registry.configs]
        [plugins."io.containerd.grpc.v1.cri".registry.configs."harbor.example.net".tls]
          insecure_skip_verify = true

Kubernetes 集群使用 docker-registry 类型的 Secret 来通过镜像仓库的身份验证,进而拉取私有映像。所以需要创建 Secret,命名为 regcred

🐳 → kubectl create secret docker-registry regcred \
  --docker-server=<你的镜像仓库服务器> \
  --docker-username=<你的用户名> \
  --docker-password=<你的密码> \
  --docker-email=<你的邮箱地址>

然后就可以在 Pod 中使用该 secret 来访问私有镜像仓库了,下面是一个示例 Pod 配置文件:

apiVersion: v1
kind: Pod
metadata:
  name: private-reg
spec:
  containers:
  - name: private-reg-container
    image: <your-private-image>
  imagePullSecrets:
  - name: regcred

如果你不嫌麻烦,想更安全一点,那就老老实实将 CA、证书和秘钥拷贝到所有节点的 /etc/ssl/certs/ 目录下。/etc/containerd/config.toml 需要添加的内容更多一点:

    [plugins."io.containerd.grpc.v1.cri".registry]
      [plugins."io.containerd.grpc.v1.cri".registry.mirrors]
        ...
      [plugins."io.containerd.grpc.v1.cri".registry.configs]
        [plugins."io.containerd.grpc.v1.cri".registry.configs."harbor.example.net".tls]
          ca_file = "/etc/ssl/certs/ca.pem"
          cert_file = "/etc/ssl/certs/harbor.pem"
          key_file  = "/etc/ssl/certs/harbor-key.pem"

至于 Docker 的配置方式,大家可以自己去搜一下,这里就跳过了,谁让它现在不受待见呢。

6. 测试功能
#

这里为了测试推送镜像,先下载一个用于测试的 helloworld 小镜像,然后推送到 harbor.example.net 仓库:

### 拉取 Helloworld 镜像
🐳 → ctr i pull bxsfpjcb.mirror.aliyuncs.com/library/hello-world:latest
bxsfpjcb.mirror.aliyuncs.com/library/hello-world:latest:                          resolved       |++++++++++++++++++++++++++++++++++++++|
index-sha256:1a523af650137b8accdaed439c17d684df61ee4d74feac151b5b337bd29e7eec:    done           |++++++++++++++++++++++++++++++++++++++|
manifest-sha256:90659bf80b44ce6be8234e6ff90a1ac34acbeb826903b02cfa0da11c82cbc042: done           |++++++++++++++++++++++++++++++++++++++|
layer-sha256:0e03bdcc26d7a9a57ef3b6f1bf1a210cff6239bff7c8cac72435984032851689:    done           |++++++++++++++++++++++++++++++++++++++|
config-sha256:bf756fb1ae65adf866bd8c456593cd24beb6a0a061dedf42b26a993176745f6b:   done           |++++++++++++++++++++++++++++++++++++++|
elapsed: 15.8s                                                                    total:  2.6 Ki (166.0 B/s)
unpacking linux/amd64 sha256:1a523af650137b8accdaed439c17d684df61ee4d74feac151b5b337bd29e7eec...
done

### 将下载的镜像使用 tag 命令改变镜像名
🐳 → ctr i tag bxsfpjcb.mirror.aliyuncs.com/library/hello-world:latest harbor.example.net/library/hello-world:latest
harbor.example.net/library/hello-world:latest

### 推送镜像到镜像仓库
🐳 → ctr i push --user admin:Mydlq123456 --platform linux/amd64 harbor.example.net/library/hello-world:latest
manifest-sha256:90659bf80b44ce6be8234e6ff90a1ac34acbeb826903b02cfa0da11c82cbc042: done           |++++++++++++++++++++++++++++++++++++++|
config-sha256:bf756fb1ae65adf866bd8c456593cd24beb6a0a061dedf42b26a993176745f6b:   done           |++++++++++++++++++++++++++++++++++++++|
layer-sha256:0e03bdcc26d7a9a57ef3b6f1bf1a210cff6239bff7c8cac72435984032851689:    done           |++++++++++++++++++++++++++++++++++++++|
elapsed: 2.2 s                                                                    total:  4.5 Ki (2.0 KiB/s)

镜像仓库中也能看到:

图片描述: 20201230171408.png

将之前的下载的镜像删除,然后测试从 harbor.example.net 下载镜像进行测试:

### 删除之前镜像
🐳 → ctr i rm harbor.example.net/library/hello-world:latest
🐳 → ctr i rm bxsfpjcb.mirror.aliyuncs.com/library/hello-world:latest

### 测试从 harbor.example.net 下载新镜像
🐳 → ctr i pull harbor.example.net/library/hello-world:latest
harbor.example.net/library/hello-world:latest:                                   resolved       |++++++++++++++++++++++++++++++++++++++|
manifest-sha256:90659bf80b44ce6be8234e6ff90a1ac34acbeb826903b02cfa0da11c82cbc042: done           |++++++++++++++++++++++++++++++++++++++|
layer-sha256:0e03bdcc26d7a9a57ef3b6f1bf1a210cff6239bff7c8cac72435984032851689:    done           |++++++++++++++++++++++++++++++++++++++|
config-sha256:bf756fb1ae65adf866bd8c456593cd24beb6a0a061dedf42b26a993176745f6b:   done           |++++++++++++++++++++++++++++++++++++++|
elapsed: 0.6 s                                                                    total:  525.0  (874.0 B/s)
unpacking linux/amd64 sha256:90659bf80b44ce6be8234e6ff90a1ac34acbeb826903b02cfa0da11c82cbc042...
done

参考
#

-------他日江湖相逢 再当杯酒言欢-------

相关文章

Kubernetes 教程:在 Containerd 容器中使用 GPU
·1803 字·4 分钟·
云原生 Kubernetes Containerd
Kubernetes 最佳安全实践指南
·1461 字·3 分钟·
云原生 Kubernetes
Kubernetes 使用 Kubevirt 运行管理 Windows 10 操作系统
·4431 字·9 分钟·
云原生 Kubevirt Kubernetes
跨云厂商部署 k3s 集群
·2351 字·5 分钟·
云原生 K3s WireGuard Kubernetes Flannel
Kubectl exec 的工作原理解读
·2984 字·6 分钟·
云原生 Kubelet Kubernetes
K8s 控制器的进化之旅
·3464 字·7 分钟·
云原生 Kubernetes Operator

公众号二维码